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Degeneracy of Resonances, Jordan Blocks,
and Gamow-Jordan Eigenfunctions
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We show that a degeneracy of resonances is associated with a second rank pole in the scat-
tering matrix and a Jordan chain of generalized eigenfunctions of the radialdtoger
equation. The generalized Gamow-Jordan eigenfunctions are basis elements of an ex-
pansion in complex resonance energy eigenfunctions. In this biorthonormal basis, any

operatorf(H,“)) which is a regular function of the Hamiltonian is represented by a
nondiagonal complex matrix with a Jordan block of rank 2.

KEY WORDS: nonrelativistic scattering theory; degeneracy of resonances; Berry
phase.

1. INTRODUCTION

In recent years there has been an increasing interest in the interference ef-
fects in isolated doublets of unbound states and the occurrence of double poles
of the scattering matrix. Some interesting examples of interfering unbound two-
level systems are th& =1, T = 0, J* = 2* doublet in®Be (Herrdndez and
Mondragin, 1994; Hinterbergeet al, 1978; von Brentano, 1996), tie = 1,

T = 0 doublet ofp andw mesons and the-Kg doublet of neutral sigma and

K mesons (Baskoet al., 1985; von Brentano, 1994, 1996, 2002; von Brentano
etal, 2000). Several, widely differing systems where double poles can occur have
been identified, such as autoionizing states in complex atoms Lairah€1995)

and atomic states in intense laser fields (Kylstra and Joachain, 1998; Magunov
et al, 2001). The problem of the degeneracy of resonances also arises naturally
in connection with the Berry phase of resonant states (hiwtazet al, 1992;
Mondragn and Herahdez, 1996, 1998; Poet al, 1992) which was recently
measured by the Darmstadt group (Dembovetlal., 2001). Some examples of
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simple quantum mechanical systems with double poles in the scattering matrix
have been recently described. Vanroesal. (1997), examined the formation of
complex double poles of th&matrix in a two-channel model with square well po-
tentials. Recently, Hearidezt al. (2000), investigated a one-channel model with
two spherical concentric cavities boundedskfginction barriers and showed that a
double pole of th&-matrix can be induced by tuning the parameters of the model;
Vanroose generalized this model to the case of two finite width barriers (Vanroose,
2001). The formal theory of multiple pole resonances and resonant states in the
rigged Hilbert space formulation of guantum mechanics was developed by Bohm
et al. (1997), and by Antonioet al. (1998).

In the present paper, we deal with the problem of multiple poles of the scat-
tering matrix and the generalized complex energy eigenfunctions associated with
them in the framework of the theory of the analytic properties of the radial wave
functions.

The plan of this paper is as follows. In Section 2, we introduce some basic
concepts and fix the notation by way of a short reminder of resonances and resonant
statesin the theory of the analytic properties of the radial wave functions. Sections 3
and 4 are devoted to a short discussion of the no-crossing rule for bound states and
its nonapplicability to resonant states. In Section 5, we show that a double pole of
the Green'’s function (double zero of the Jost function) is associated with a chain
of length two of Gamow-Jordan generalized eigenfunctions and derive explicit
expressions for this generalized eigenfunctions in terms of the outgoing wave Jost
solution, the Jost function and its derivatives evaluated at the double pole. We give
the normalization and orthogonality rules for the generalized eigenfunctions in the
Jordan chain associated to the double pole of the Green'’s function in Section 6.
Section 7 is devoted to showing that the Gamow-Jordan generalized eigenfunc-
tions in the Jordan chain are elements of a complete set of states containing the
real (bound states) and complex (resonant state) energy eigenfunctions plus a con-
tinuum of scattering wave functions of complex wave number. In Section 8 we
derive expansion theorems (spectral representations) for opefgtsf8) which
are regular functions of the radial Hamiltoni&{” and show that, in this basis,
the operatorf (H{) is represented by a complex matrix which is diagonal except
for a Jordan block of rank 2 associated to the double zero of the Jost function and
the corresponding Jordan chain of generalized Gamow-Jordan eigenfunction. We
end our paper with a summary of results and some conclusions in Section 9.

2. REGULAR AND PHYSICAL SOLUTIONS
OF THE RADIAL EQUATION

The nonrelativistic scattering of a spinless particle by a short ranged potential
v(r) is described by the solution of a Soldifiger equation. When the potential is
rotationally invariant, the wave function is expanded in partial waves and one is
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left with the radial equation

d?p(k, 1)
dr2

As is usually done when discussing the analytic properties of the solutions of (1)
as functions ok, rather than starting by defining the physical solutimé?(k, r),

we define the regular and irregular solutions of (1) by boundary conditions which
lead to simple properties as functiongkoT he regular solutiog, (k, r) is uniquely
defined by the boundary condition (Newton, 1982)

r|im0(2£ + Dr gk, r) =1, ¥

e v |own <o (1)

¢¢(k, r) may be expressed as a linear combination of two independent, irregular
solutions of (1) which behave as outgoing and incoming waves at infinity,

1
pe(k, 1) = Elk_l_l[ fo(—k) fo(k, 1) — (=2)° fo(k) fo(—k, 1], )
wheref,(—k, r) is an outgoing wave at infinity defined by the boundary condition
lim_exp(-ikr) fo(~k,r) = (+i)* (4)

and f,(k, r) is an incoming wave at infinity related t(—k, r) by
f@(kl r) = (_1)( fé*(_kv r) (5)

for k real and nonvanishing.
The Jost functionf,(—k) = f,(—Kk, 0) is given by

fe(—k) = (=)' KW fo(—k, 1), ¢e(k, )], (6)

whereW[ f, g] = fg' — f’gis the Wronskian. The Jost functidip(—k), has ze-
roes (roots) on the imaginary axis and in the lower half of the comipletane.
When the first and second absolute moments of the potential exist, and the
potential decreases at infinity faster than any exponential (evdr,)ihas a Gaus-
sian tail or if it vanishes identically beyond a finite radius) the functiés{s-k),
oe(k, 1), andk® f,(—k, r), for fixedr > 0, are entire functions &f(Newton, 1982).
Therefore, the derivatives of these functions with respect to the wave number
k exist and are entire functions kfor all finite values ok in the complexX-plane.
The differential equations satisfied by the derivatives of the functetis r)
andf,(—k, r) with respect tdk are obtained from (1) taking derivatives with respect
to k on both sides of the equation,

d2¢,(k, 1)
dr2
d?pe(k,r) [, €t+1)
dr2 +[k_ r2

N [kz _ @ _ v(r)i| bo(k, 1) = —2ko(K, 1), (7)

- v(r)} Pe(k,r) = —4kee(k, 1) = 20k, 1), (8)
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in (7) and (8) we have used the notatipi(k, r) = d¢,(k, r)/dk. Similar expres-
sions are valid for the derivatives with respecktof the outgoing wave solutions
fe(—k, ).

The scattering wave functiqnf)(k, r) is the solution of Eq. (1) which van-
ishes at the origin and behaves at infinity as the sum of a free incoming spherical
wave of unit incoming flux plus a free outgoing spherical wave,

Pk 0=0 ©)
and

lim [y k1) =[Ok, 1) = SR K, 1]} = 0. (10)

In this expressionﬁfj)(k, r) and ﬁff)(k, r) are Ricatti-Hankel functions that de-
scribe incoming and outgoing waves respectivBlyk) is the scattering matrix.

Hence, the scattering wave functimf)(k, r) and the regular solution are
related by

K (k,r)

and the scattering matrix is given by
fo(K)
k) = . 12
S0 =7 (12)

The complete Green’s function for outgoing particles or resolvent of the
radial equation may also be written in terms of the regular solugigk, r) and
the irregular solutionf,(—k, r) which behaves as an outgoing wave at infinity

¢ do(K, re) fo(—K, rs )

G r 1) = (-1

(13)

3. BOUND AND RESONANT STATE EIGENFUNCTIONS

Bound and resonant state energy eigenfunctions are the solutions of (1) which
vanish at the origin

Une(Kn, 0) = O, (14)
and at infinity satisfy the boundary condition

. 1 dune(kn, r) . _
r“—mo[ung(kn,r) ar —|kn} =0, (15)

wherek, is a zero of the Jost function,
fo(—ky) = 0. (16)
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From Egs. (1) and (3) we verify that all roots (zeroes) of the Jost function are
associated to energy eigenfunctions of the 8dhmgjer equation.

Bound state eigenfunctions are associated to the zerog$-ei) which lay
on the positive imaginary axik? = —«2 < 0, while resonant or Gamow state
eigenfunctions are associated to the zeroes of the Jost function which lay in the
fourth quadrant of the complexplane.

From (3), (4), and (16), bound states and Gamow or resonance eigenfunctions
are related to the regular solutigi(k, r) by

Une(Kn, 1) = N toe(Kn, 1), (17)

where Ny, is a normalization constant. Because of the vanishing,6f k),
¢¢(kn, ), is now proportional to the outgoing wave solutioip(—ky, r), of (1).
Hence,
71i (_i)@+1
U (kn, 1) = Nt 5 g folkn) o (K, ). (18)

This expression shows, in a very explicit way, that the Gamow state eigenfunctions
Une(Kn, 1) with kn = kn — iy, andkp >y, > 0, are solutions of (1) which vanish
at the origin and asymptotically behave as purely outgoing waves which oscillate
between envelopes that increase exponentially witihe corresponding energy
eigenvalueg,, are complex withRe(&,) > F(&n).

The bound state eigenfunctiong (ks, r) are also solutions of (1) which sat-
isfy the boundary conditions (14) and (15), but, in this clises i ks with, ks > 0,
which means that asymptotically the outgoing wave of imaginary argument,
fo(—ks, ), decreases exponentially withand the energy eigenvalé is real
and negative.

4. THE NO-CROSSING RULE FOR BOUND STATES

In the case of bound states, the normalization constant is related to the deriva-
tive of the Jost function evaluatedlatand it may also be expressed as a hormal-
ization integral. The zero of the Jost function is on the positive imaginary axis,
and the bound state eigenfunction is quadratically integrable (for time reversal
invariant forcesy, (i ks, ') is real). Newton (1982) gives the following expression:

, 1 (df(K)
i\ dk

) mw=/wm%mwm (19)
ks 0

Since the normalization integral is positive and the functfig(k) is regular
atks = ik, the derivative of the Jost function evaluatettat= i ks cannot vanish.
Therefore, the zero of,(—Kk) atks = i xs must be simple. The corresponding pole
in G (k;r, 1), ¥ (k, r), andS (k) must also be simple.
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It follows that, in the absence of symmetry, the real, negative energy
eigenvalues of the radial equation for a one-channel problem cannot be
degenerate.

5. THE NO-CROSSING RULE DOES NOT HOLD FOR
RESONANCE STATES

In the case of a resonant state, the zero of the Jost funét{etk) lies in the
fourth quadrant of the complé«plane,

Kn = kn — i yn, (20)

with k, > v, > 0.

The resonant or Gamow eigenfunctigrik,, r) is an outgoing spherical wave
of complex wave numbédt, and angular momentut Therefore, for large values
ofr, ¢.(kn, r) oscillates between envelopes that grow exponentially witkence,
the integrals over must be properly defined. This may be done by means of a
Gaussian regulator and a limiting procedure (Zel'dovich, 1960, 1961). Berggren
(1968, 1996) gives the following expression:

1 df,(=K) . o o\ L2
i4k§(/5+1) ( dk )kn fo(kn) = \lﬂanO/O expvr )¢y (Kn, r)dr (21)

The integral on the right-hand side is a complex number and it may vanish.

Since fy(k,) has no zeroes in the lower half of the compkeglane, the left-
hand side of Eq. (21) vanishes only wheify (—k)/dK)x, vanishes. Then, we have
two possibilities:

(i) When (df,(—k)/dKk, does not vanishf (—k), has a simple zero &t=
kn, the integral on the right-hand side of Eq. (21) does not vanish and the
normalization constant\2,, occurring in (17) is given by (21).

(i) When

df,(=k)\
( i )kn_o, (22)

the integral on the right-hand side of (21) vanishes,

lim / h expvr2)p?(ky, r)dr = 0 (23)
v—> 0

and the Jost functioffy (—k) has a multiple zero & = k. In this case, the
Green's functionG{”(k;r, '), the scattering wave function; " (k, r)

and the scattering matrig (k) have a multiple pole ak = k,. The
normalization constant of the Gamow eigenfunction is no longer given
by (21).
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Furthermore, it will be shown below that whefi(—k) has a multiple
zero (a multiple resonant pole of rankin Gﬁ”(k; r,r’), wﬁ)(k, r), and S (k))
the corresponding complex energy eigenvalues are degenerate even in the ab-
sence of symmetry. That is, the no-crossing rule does not hold for resonant
eigenstates.

6. DOUBLE POLES IN THE GREEN’S FUNCTION

A convenient way to relate resonant states with processes of physical interest
is via the Green'’s function or resolvent of the radial equation with outgoing wave
boundary conditions. The spectral representation of the complete Green’s function
Gfﬁ(k; r, r’) for outgoing particles is (Newton, 1982)

Vee(K, r)VE (K, r')
Gk, 1y = Y o isen
¢ ( ) s;d k2 + KSZ

YK, YW, )
/ e st

(24)

In the following it will be assumed that the Jost functifui—k’) has a double
resonance zero &t = ky, in the fourth quadrant of th&-plane, all other zeroes of
fo(—k’) in the same quadrant being simple. Then, from (11), the scattering solution
w,§+)(k/, r) as function ofk’-complex has one double resonance pol&’ at kg,
and simple resonance poleskdt=k,,n=1,2,...,. m—1,m+1..., allk, in
the fourth quadrant of the complékplane. The functiorwf)*(k’, r') is regular
in the lower half of the complek’-plane.

The integration contour in the second term on the right-hand side of (24) may
be deformed into the lower half of the compléxplane, as shown in Fig. 1. When
the deformed contout crosses over resonant poles, the theorem of the residue
gives

Vse(K, r)vE (K, r’)
G(+)(k; r, I’/) _ st st
‘ sgénsd k2 + KS2

) ()10 r
E ZmRes[ e Ky (K ):|
k'=kn

n resonant ( k/2)
poles

(25)

) (e (B (s pr
7 Je )
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Fig. 1. Integration contou€ in the complex’-plane.

6.1. Residue at a Simple Pole

When f,(—k’) has a simple zero &t
fo(—K') = (K" — Kn)Gne (K). (26)
Then, from (3), (5), (11), and (26)
2WWHMWMW}
K=Ky

2mi RGS[; k2 — k/2

2 [ K, (K, TR
_hﬁﬂm[wmmmw—w ’ (7)
which may be written as
. 2y, K, ) Une(Kn, T)Un (Kn, 17)
2riR — = 2
Tl es[n (k2 _ k/2) - K2 _ k% ) ( 8)

which is the well-known expression that shows t@é*f)(k; r, r’) as function ok-
complex has a simple polelat= k, with residueun, (kn, r)une(kn, r'). The Gamow
eigenfunction or normal mode,(kn, 1), is given by (18) and the normalization
constantNy, is given by

2 1 df,(—k)
NG = ) (g ) (29)

in agreement with Berggren’s result given in Eq. (21).
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6.2. Residue at a Double Pole
When f,(—k’) has a double zero &t = k;,,, we may write
fe(—K) = (K" = kn)*Qem(K)) (30)
the functiong,m(k’) is regular ak’ = k,, and may be expanded as
with

(d2 fo(—K)

e )km £0. (32)

Thus, the scattering wave functiamf*)(k/, r) has a double pole &t = kp,

¢e(K, )k
(k' — km)?gem(k’)’

but I//éJr)*(k/, r’) is regular ak’ = ky, sincef,(k’) has no zeroes in the lower half
of the complex<’-plane,

K, 1) = (33)

pe(K, r)KED
fe(k)

Then, the residue of the Green'’s funct'@b*)(k’; r, r’)atthe double pole ik’ = kq,
is obtained from the Cauchy integral formula as

) et (B ppr pr
szes[E‘”z (K. 1) (k,r)}
K =Km

YK, 1) = (34)

p K2 —K?)

i {% [*Mk“ f>¢f<k““>k’2“*”“ . @)
K=k

9em(K') fe (k) (k> — k?)
After computing the derivative and rearranging some terms, we obtain

2y w e K
27 Res[; K —K?)
k'=km

1 h? [@(km, r)oe(Km, 1)

TNZ o (E—Enp

L Belkm, DB, 1) + Bl 1) ke, r/)}

(E = £m) (36)
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where, according to (17§ (km, r) is the nonnormalized Gamow eigenfunction

and¢(km, r) is a generalized Gamow-Jordan eigenfunction or abnormal mode

given by

dgpe (Km, 1)
dgm

Em is the complex energy eigenvalug, = (h?/2u)k2, and the constant factor
Ce¢(km), multiplying ¢¢(km, r) in Eq. (37), is

be(km, T) = + Ce(Km)e (Km, 1), (37)

Culk )_Z_Milif-l-l_} 1 df,(km)
T 020 [ ke 2 fu(kn) dky
1 (d2f(—k)\ T [ d3 (=K
3 _(d (- )) (d (- )) | (38)
6 dk Ken dk K
The normalization constam?, is now
21 1 d? f,(—K')
2
NE, = (F) o ) <T)Kﬂ (39)

The expression (36) suggests the following normalization rule for the chain
of( ?amow—Jordan generalized eigenfunctions belonging to a double pole of
Gy (K, r,1)

1
Ume(km: r) = —zd)@(km, r)! (40)
and
Ome (K, 1) = L Gt 41
me\Rm, —mfpé( ms ) ( )

Substitution of (40) and (41) in (36) gives
2K, K, r')}
K=k

27i Res[n D)

b [ Ume(km, T)Ume (K, ')
C2u (E — &m)?

. Ume(m, 1) 0me (K, ™) + O (K, 1)U (ki f’)] '

42
(E —&m) (42)
This result shows that a pole of second order in the Green’s fun@tﬁ?ﬂ(k; r,r')

is associated with a chain of two generalized Gamow-Jordan eigenfunctions,

Um,¢(Km, ) and Qe (km, r) which belong to the same complex energy eigenvalue
Em = (h?/21)K3,.
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Finally, substitution of (28) and (42) in (25) gives the following expression
for the complete Green'’s function of the radial equation

s bound E + | ES'
states

Gk, 1) = 5 {Z Vse(k, N)vg, (k. 1)

Une(Kn, M)Une(Kn, 1)
+ Z E - (c/‘n

n#m
resonant
states

Ume (Km, M)Ume(Km, ')
(E — &Em)?

UK 1) (ki )+ G (i, )k, r’)}

(E — &m)

) (B (per o
Q2 [ 3

k/2)

7. ORTHOGONALITY AND NORMALIZATION INTEGRALS
FOR GAMOW-JORDAN EIGENFUNCTION

As in the case of bound and resonant state eigenfunctions associated with
simple poles of the Green’s function, we may derive orthogonality and normaliza-
tion rules for the Gamow-Jordan eigenstates in terms of regularized integrals of
the generalized Gamow-Jordan eigenfunctions. Following the same procedure as
in Berggren (1968, 1996), it may be shown that, wHef-k’) has a double zero
atk’ = kn, the following relations are valid,

1 d2f,(— k/))
k'=km

i 8kr2n(e+1)

fy(kn) ( -

T o ,Ur2d¢f(kmir)
_1@0/0 e SR g ) (44)

and

1 ¢ d3 (=K'
8k2(e+1) ¢(km) dk3 ‘.

- (dzzgkl))km (Z(Ek: 2 fz(im) dzﬂ(nm)ﬂ
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e (deekm 1)
= Ilm/(; e (T) dr. (45)

From the expression (38) f@,(ky) and Egs. (44) and (45), it follows that

N el dm(kmr))2 %K
Ilmf e Vr <7 dr 4+ 2C,(k
tim | . (k)=

. o _Urqub@(kmv r) _
X (lanO/O e T¢>g(km,r)dr> =0, (46)

which may be rewritten as

i > —pr2 doe(Km, 1) 2
im [~ e [ 2 kgt |

= C2(Km) lim / e 2 (K, r)dr, (47)
V—> 0

but, according to Egs. (22) and (23), wh&it—k) has a double zero &t= k,, the
integral on the right-hand side of (47) vanishes. Therefore, the integrand on the
left-hand side of (47) is the square of the generalized Jordan-Gamow eigenfunction
and the relation (45) translates into

lim /0 e " $2(Km, r)dr =0 (48)

which shows that also the regularized integral of the square of the generalized
Gamow-Jordan eigenfunction vanishes.

An expression for the normalization constafg, in terms of a normalization
integral may be obtained from (44) and (39),

Az = i [ e S0 e, ryar (49)

writing dey /d&r, in terms ofé, (km, r) and recalling that the integral @ﬁ(km, r)
vanishes, we get

Nine = lim fo " e G (ke P (e T, (50)

which shows that the right-hand side of (50) is the normalization integral for the
Gamow-Jordan generalized eigenfunctions associated with a double pole degen-
eracy of resonances. However, it is convenient to note that this expression does
not fix the normalization rule fog,(km, r) andé,(km, r) in a unique way. Since
#¢(km, 1) andg,(km, r) are linearly independent, they have different dimensions
and its product has no obvious interpretation in terms of observable quantities,
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therefore, there is no a priori reason to normalize both functions with the same
normalization constant. Thus, we still have the freedom to write (50) as

im /0 o (A%@(km, r)) (Xmifmﬂ(km, r)) dr=1, (51)

whereNrfw is given in (39) andX, is a non-vanishing real or complex number that
we associate with the double pole singularitﬁﬁf)(k; r,r’)atk = kn,. Therefore,
a more general normalization rule for the Gamow and Gamow-Jordan generalized

eigenfunction that the one proposed in (40) and (41) would be

1
Ume(Km, T) = md’e(km. r (52)
and
N Xm ~
Ome(Km, 1) = ./\/—K(M(km' r. (53)

With this normalization, the orthogonality and normalization integrals for the
Gamow-Jordan generalized eigenfunction associated to a double pole of the
Green's function, Egs. (21), (48), and (50) take the form

lim / e U2, ,(km, r)dr =0 (54)
V—> O
lim / e 02, ,(km, r)dr =0 (55)
v—> 0
and
lim / & Um.¢(Km, F)Cm,e(k, r)dr = 1 (56)
v—> 0

The form of these orthogonality and normalization conditions is independent of the
value of the constaX,,,. However, if the Gamow-Jordan generalized eigenfunction
are normalized according to (52) and (53), the expression for the residue at the
double pole ofoj’)(k; r, r’) would be explicitly dependent oX,,, since a factor

X2 will appear multiplying the ternime(Km, r Jume(km, r’) in the expression for

the residue at the double pole@f" (k;r, r’) given in Eq. (43),

sznume(kmy F)Ume (Km, 1)
(E — &m)?
Ume(kma r)omi(kma I'/) + lAalme(kma r)uml(kma I'/)
(E —&m) '

As is evident from the definition (37), the generalized eigenfunctiiafm, r)
andgn, (km, r) have different dimensions, if one tak¥g, of dimension (energy)?

+ (57)
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the normalized eigenfunctions, (kn, r) andln.(kn, r) have the same dimensions
namely (energy)*/? so that when X,) = (energy}’? the higher order Gamow-—
Jordan vectors become Jordan vectors with the same dimensions as the Gamow
vectors.

This freedom in the normalization rules could be used to define normalized
Gamow-Jordan eigenfunctions with the same dimensions as those of the Gamow
eigenfunctions associated to simple poleeé*f)(k; r,r).

However, to keep the notation as simple and transparent as possible, in this
paper, we will choos&,, = 1, and normalize the Gamow-Jordan eigenfunctions
according to the rule given in (40) and (41).

8. COMPLETENESS AND THE EXPANSION IN COMPLEX
RESONANCE ENERGY EIGENFUNCTIONS

In this section it will be shown that the Gamow—-Jordan generalized eigen-
functions are basis elements of an expansion in complex resonance energy eigen-
functions.

Given two square integrable and very well behaved functibfigd and x (r)
which decrease at infinity faster than any exponential, the completeness of the
orthonormal set of bound state and scattering solutions of the radiad@ober
equation (Newton, 1982) allows us to write

(@x) = Y _(®IVse)(Vs, £lX)

s bound
states

2 o0
+2 / @y DK K x), dK (58)
T Jo

where(®|x) is the standard Dirac notation

(®lx) = fo " o) (r)dr. (59)

As in the previous section, we shall assume that the Jost fundtierk)
has a double zero &t = ky, in the fourth quadrant of the compléx-plane, all
other zeroes of ,(—k’) in that quadrant being simple. Then, the scattering function
1//£(+)(k/, r) as function ofk’-complex, has one double resonance polk’ at kp,
and simple resonance poleskat kp, N =1,2,..., m—1,m+1..., allin the
fourth quadrant of the complek-plane. The functions)*(k’, r) is regular and
has no poles in the lower half of théplane.

To make explicit the contribution of the resonant states to the expansion in
eigenfunctions, the integration contour in the second term on the right-hand side
of (58) is deformed as shown in Fig. 1. When the deformed cor@auosses over
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resonant poles, the theorem of the residue gives
(®@1x) = D _(DVse)(Vselx)

s bound
states

. 2
+ 3 2riRes (@i

2
= /C (@K DK dK. (60)

The residues may be readily computed from Egs. (11) and (60).
When f,(—k’) has a simple zero &t = kj,

27i Res[ 2 (@YK (K x >]

T K =kq

(D] (K)) (e (K) 3 )k 2D

, df,(—x) ,
(k —kn>( " )k fo(K)
n K=k,

4
=HKn

= 4iRes

- L (@16 (KN [@eK) 0 Temker (61)

fu(ke) ( dfp(=K')
aen \(Tae ),

where

{0160 N, = Jim [~ @000, e 62
and, sincep,(K', r) is real fork’ real,

[0k, = m [ . 63

Now, sincep,(ky, r) is an outgoing wave which oscillates between envelopes
that grow exponentially at infinity an@(r) andy (r) are very well behaved func-
tions ofr that decrease at infinity faster than any exponential, the integrals of the
products®*(r)¢.(kn, r) andee(kn, r)x (r) exist, and we may take the limit indi-
cated in the right-hand side of Egs. (62) and (63) under the integration sign. The
coefficient 4k2¢+I[ f,(k,)(df,(—k’)/dK)x, ] is the inverse of the normalization
constantN?, defined in (29).

Therefore,

. 2
ori Res[— @1y K)) <w§+)(k’)|x>}
T k'=k,

= (@|Uue(Kn))(Une(Kn)lx) (64)
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where the notation means,

@l = [ @ @Ol nar (65)
and

nlblz) = [ " Une(ke, D)X (), (66)

the functionun,(k,, r) is the normalized Gamow eigenfunction defined in (17),
(18), and (29).

When f,(—k’) has a double zero &t = kp,, w}”(k’, r) has a double pole
atk’' = ky, and the residue of the term2(®|y " (K)) (v (K)|x) atk’ = k is
given by

27 Res[ 2 (@K K x >]

T K =Km

= 4 Res|: (k, _ km)zglm(k/) f((k’)

| d (@K (e (K) x> k2D
- [W ( Iem(K) fe (k) >j|k’—km’ ©7

the functiong,m(k’) is given in (30) and (31).
After computing the derivative indicated in (67) and rearranging some terms,
we obtain

(¢|¢e(k’)>(¢e(k’)|x>k/2(£+l):|
K'=Km

27i Res[E < oy KN WK x >]
T k' =km

1 R
= —[{PI@e(km)) (@e(km)lx)
Nive
+ (@1 (k) (e (k) 1 )], (68)
the nonnormalized generalized Gamow-Jordan eigenfungtiti,, r) and the
normalization constant/2, are given in Egs. (37) and (39) respectively. As in the
computation of the residue at a simple pole, wiign) and x (r) are very well

behaved functions of, the limitk’ — k, can be taken under the integration sign.
Hence,

. 2
2ri Res[— @y (K)) <wé*’(k/)|x>]
T K =K
= (P |0me(Km)) (Ume (Km) 1 x)

+ (@ [Ume (Km)) (Ume (Km) [ ), (69)
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where, the notation means

(e (ki) = /O " 4 (1) me (ks 1)1 (70)

and

(k) ) = /O " e (e 1) (1), (71)

Ome(km, 1) is defined in (41).
Finally, substitution of the expressions (64) and (69) in (60) gives the follow-
ing expansion:

(@x) = Y (D|Vse) (Veelx)

s bound
states

+ ) (PUne)(Unelx)

n#m
resonances

+ (@] Ome (Km)) (Ume (k)1 x 1)
+ (@ Ume (Km)) (Ome (Km) 1 x 1)

;2 / Sy DY) (1K) 1) K. (72)

This expression shows that, when the Jost function has many simple zeroes and
one double zero in the fourth quadrant of the comgigiane, the Gamow eigen-
functionsur, (km, ) associated to simple zeroes of the Jost function and the chain
{Ume(Km, 1), Ome(km, 1)} of Gamow—Jordan eigenfunctions associated to the dou-
ble pole of the Jost function are basis elements of an expansion in generalized
bound and resonant state eigenfunctions plus a continuum of scattering functions
of complex wave valuek'.

Omitting the arbitrary functionb(r) in (72), we obtain the complex basis
expansion of an arbitrary square integrable and well-behaved funefign

X)) =D Vse(r)Vselx) + D Une(Kn, 1) (Unelx)

s bound nZ=m
states #

+ Ume(Km, 1) (Umel X ) + Ume(Km, 1)(Umelx)
2
e R R TN 73

In this expressionn (k,, r) are the Gamow eigenfunctions representing decaying
states associated to simple resonance poles of the scattering B{&jrand the
Green's functiorGM(k; r, r’) and{ume(Km, 1), Ome(Km, 1)} is the Jordan chain of
length two of generalized Gamow—-Jordan eigenfunctions associated to the double
pole of the scattering matri®(k) and the Green’s functioB™) (k; r, r’) atk = k.
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The last term on the right-hand side of (73) is the background integral defined along
the integration contour shown in Fig. 1.

9. JORDAN BLOCKS IN THE COMPLEX ENERGY REPRESENTATION

Once it has been established that the Gamow eigenfunatig(is,, r) and
the Jordan chaifume(Km, ), Ome(Km, r)} of generalized Gamow-Jordan eigen-
functions are elements of the basis set of eigenfunctions in the expansions (72)
and (73), we may represent any operat¢H "), which is a regular function of
the HamiltonianH(®, in terms of its matrix elements in this basis.

Let us start by deriving an expression for the actiorf Gf,(“)) on the gener-
alized Gamow-Jordan eigenfunctiog, (km, r). With this purpose in mind, let us
write the eigenvalue equation satisfiedupy (km, ) as

HOUme(km, 1) = EmUme(Km, ), (74)
where,
h? [ d? 0 +1)
(4
Hr()zﬂ[m—v(r)— 3 ] (75)

v(r) is a well-behaved short-ranged potential which satisfies the conditions stated
in Section 1. Now, let us consider a holomorphic functifg) of the complex
variable&, such that,

fE) =Y aél, (76)
j=0
the coefficients; are independent d&.
Then, from (74) and (76),

 (H) e (Kins 1) = £ (Em)Ume (K, 1) (77)

Taking derivatives with respect to the eigenvadiygon both sides of (77), we
obtain

dUme (Km, 1) IUme(Km, 1) | 9F(Em)
f(R©O) I ) ¢ Km, ). 7
( r ) agm (gm) 8€m agm UmZ( m:r) ( 8)
From this equation and the definition, Eqgs. (37)—(41){@f(kn, r), it follows
immediately that
N R of (€
f(HO) B, 1) = £ Emmin, 1)+ 5 1), (79)
m
Notice that a necessary and sufficient condition for the existence of
IUme(Km, r)/3Em is the vanishing ofdf(—k)/dK)y,, -
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The rule stated in Eq. (79) permits us to calculate the actioh(f(“) on
the generalized Gamow-Jordan vectors occurring in the complex basis expansions
(72) and (73).
Now, we can write the operatdr(H®) in terms of its matrix elements in
the complex energy basis. This may be done by acting Wth()) on the left on
both sides of Eq. (73),

F(HO) % (1) = > F(EVaelr) Vel 1)

+ Z f (En)Une(Kn, 1) (Unelx)
n#m

of (Em)

dEm

+ (f(Em)ﬂmg(km, r)+ Ume (K, I’)) (Umelx)

+ f(Em)Ume(Km, 1) (0melx)
+2 [HEww P00, &. (80)

Multiplying both sides of (80) byd*(r) and integrating over, we get
(@ F(HO)x) =Y (®Ivsr) f (E) (Vs x)

S

+ Y (®une) f(En)(Unelx) + (P10me) f (Em)(Ume|x)

n#m

R of (Em
+<q>|umz)(f(em)(ume|x>+ ¢ )(umux))

12 f @WK FEY WK, dK. (81)

To simplify the notation, suppose that the system has no bound states only
resonances and that the first two resonances are degenerate. Rearranging Eq. (81)
in matrix form, we get

(@ (HY)1x) = (@luge), (®[01e), (Pluge), - )
f(&) 2 0 0 00

a
0 f(&) 0 0 00... Eui%
.| o o0 fE) o oo

0 0 o0 fE)oo... || X

2
2 [@un 1N . 52)
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In this matrix representation of (H"),* the upper left 2« 2 submatrix is
a Jordan block of rank 2 associated to the chain of Gamow-Jordan generalized
eigenfunctions{iy,(ks, r), uw(ks, r)} belonging to the double zero of the Jost
function f,(—k) (double pole of the scattering matrix and the Green’s function).
Except for this 2x 2 block, this matrix is diagonal with the eigenvaluéé&,)
in the diagonal entries. Simple zeroes of the Jost function correspond to simple
(nonrepeated) eigenvalues bfH ) while the double zero of,(—k) correspond
to the twice repeated (degenerate) eigenvdl{#&) occurring in the Jordan block.

The off-diagonal non-vanishing element in this block f¢£1)/9&;.

The difference in physical dimensions of the off-diagonal and the diagonal
entries inthe 2 2 Jordan block is compensated by the difference in normalization
of the Gamow-Jordan chaffi;,(ky, r), use(ks, r)} and the Gamow eigenfunctions
Une(Kn, 1)(n = 3, 4,...) which are normalized according to (40 and 41) and (17)
and (29) respectively.

It will be instructive to consider some simple examples.

We first choosef (H{) = H®. Then, from (82) we obtain

(@1(HO)1x) = (@luge), (DI01e), (luz), - --)
&1 0000---

00000 81“‘;
<[ 0o0&oo0o0-- (u”X)
00 0&00--. 3_”‘
E B e ) s
+n/<¢|wz KNE WK 1), dK. (83)
C

From this example, it is evident that in a degeneracy of two resonances in the
absence of symmetry, the degenerate complex eigengalaecurs twice in the
spectral representation of the radial Hamiltoni4? given in (83), while there is

only one Gamow eigenvector or normal modg(k;, r ), associated to the degener-

acy. Thisis so, because the Gamow-Jordan generalized eigenfunction or abnormal
mode,ly,(ky, r), is not an eigenfunction of the radial Hamiltonihiﬁe). Thisis a
generic property of this kind of degeneracy which may be stated in slightly more
formal terms as follows. In a degeneracy of resonances in the absence of symmetry,
the algebraic multiplicity is always larger than the geometric multiplicity. Here,
we mean by algebraic multiplicity of a degeneragy, the number of times the
degenerate complex eigenvalue is repeated, and, by geometric multiplicity of the

4From the way it was derived, it is evident that the matrix in Eq. (82) represents the actit@hl,gf)
as an operator on the space of continuous antilinear functionals on the Schwarz space of very well
behaved test functions.
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degeneracy.g, the dimensionality of the subspace spanned by the eigenvectors
associated to the degenerate eigenvalue (Lancaster and Tismenetsky, 1985).
Then,
Ha > Mg (84)
Let us consider now the complex energy representation of the resolvent op-
erator. In this casé (H") = 1/(E* — H®), then, from (82), we obtain

1 N
(@] =510 = (Pluse), (B[0s), (Pluz), )
E—-H
i 1.0 0 00.--
E-& (E=&) 0
Uze|X)
0 gm0 0 00| [
x =2 ] sl
0 0 0 g00-- _
2
)1 ) 77
— [ (® K))——— k 85
+ 2 [0 g =g w000, 8. @9)

It may easily be verified that, when we delete the arbitrary functib(rg
andy (r) in this expression, the resulting expansion(qu [r’y is equal to the
expansion in resonance eigenfunctions of the complete Green’s function given in

$43) which was derived in Section 5 directly from the spectral representation
of G +)(k r,r’). The occurrence of the double poIeCt‘rfr (k;r,r"), as function of
the complex energy, is thus associated to the occurrence of a Jordan block of rank
2 in the complex basis representation of the resolvent operator and a Jordan chain
of Gamow-Jordan generalized eigenfuncti¢ing (ky, r), uie(ky, r)}.

Finally, let us consider the time evolution operator expHt). For each
fixed value of the angular momentum, it will be enough to consider the operator
f(H®) = exp(iH®1). In this case, from Eq. (82)

(@l exp(—iHO[x)

= ((®|uge), (P[01e), (Pluze), - - )
expCi&it) —itexpi&t) 0 00-\ /(0ulx)

0 exp(i&it) 0 00- || (Uwelx)
x 0 0 expEi&st) 00- (Uselx)
zfmeMemhéﬂ DKk, K. (86)

As in the previous examples, the time evolution operator is nondiagonal in
the complex energy basis representation. The time evolution of the Jordan chain
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of Gamow—-Jordan generalized eigenfunctifing(ky, r), ui£(kq, r)} is given by a
Jordan block of 2« 2 with an exponential time dependence in the diagonal entries
and a first order polynomial times an exponential in the off-diagonal entry. Hence,
the time evolution of the Gamow-Jordan generalized eigenfunction or abnormal
mode is a superposition of the abnormal méegék;, r) evolving exponnentially

in time plus the normal mode, (ki, r) evolving according to the product of a first-
order polynomial times an exponential time evolution factor. The time evolution
of the normal mode,(ky, r) in the Gamow—Jordan chaffiy,(ky, r), uze(ky, 1)},

as well as the time evolution of all other normal modggk, r) associated to the
simple zeroes of the Jost function (simple poles of the scattering matrix), is purely
exponential.

10. SUMMARY AND CONCLUSIONS

In a one-channel scattering problem, degeneracy of resonances, that is, the
exact coincidence of two (or more) simple resonance poles of the scattering matrix
and the complete Green’s function, arises from the exact coincidence of two (or
more) simple resonance zeroes of the Jost function which merge into one second
(or higher) rank resonance zero of the same function lying in the fourth quadrant
of the complexX-plane.

We found that, associated to a double resonance zero of the Jost function,
there is a Jordan chain of length two of generalized Gamow-Jordan eigenfunctions
{Ome(Km, 1), ume(km, 1)} belonging to the same degenerate complex energy eigen-
value &y. In consequence, the correspondin? second-rank pole occurring in the
scattering matrixg (k), the Green's functiorfo (k; r, r") and the scattering wave
functionwﬁ)(k, r) is also associated to this Jordan chain of Gamow-Jordan gener-
alized resonance eigenfunctions. Explicit expressions for the normalized Gamow
and Gamow-Jordan generalized eigenfunctions in this chain, written in terms of
the outgoing wave Jost solution, the Jost function and its derivatives evaluated at
the double zero, are obtained from the computation of the residue of the Green’s
function at the double pole.

We also showed that the Jordan chain of generalized eigenfunctions are el-
ements of the complex biorthonormal basis formed by the real (bound states)
and complex (resonance states) energy eigenfunctions which can be completed by
means of a continuum of scattering wave functions of complex wave number. With
the help of this result, we derived expansion theorems (spectral representations) for
operatorsf (H®) which are regular functions of the radial Hamiltonigif®. In
this basis, the operatdr(H®) is represented by a complex matrix which is diag-
onal except for one Jordan block of rank 2 associated to the double zero of the Jost
function and the corresponding chain of generalized eigenvectors. The diagonal
entries in this matrix are the eigenvalub&,), simple zeroes of the Jost function
correspond to nondegenerate eigenvalues(ef“)) while the double zero of the
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Jost function corresponds to the twice repeated (degenerate) eigerv&lie

in the diagonal entries of the Jordan block. The off-diagonal, non-vanishing ele-
ment in this block i99f (&m)/0&,. In particular, the occurrence of a double pole

in the Green’s function, as function of the complex energy, is thus associated to
the occurrence of a Jordan block of rank 2 in the complex basis representation
of the resolvent operator and the corresponding Jordan chain of Gamow-Jordan
generalized eigenfunctions.

Finally, let us stress the fact that in the Gamow-Jordan chain of generalized
eigenfunctiongUm¢(Km, 1), Ume(Km, r)} associated to the double zero of the Jost
function, there is only one eigenvector, namely the Gamow eigenfunction or nor-
mal modeuy (kn, ). The Gamow-Jordan generalized eigenfunction or abnormal
mode (e (km, I) is not an eigenfunction of the radial Hamiltonian. Hence, the
dimensionality of the subspace of eigenfunctions associated to the degeneracy of
two resonances or geometric multiplicityy, of the degeneracy is one. But, the
number of times the degenerate complex energy eigenvalue is repeated in the spec-
tral representation dfi{¥) or algebraic multiplicity of the degeneragys, is two.
Therefore, the algebraic multiplicity is larger than the geometric multiplicity of a
degeneracy of resonances. This is a generic property of a degeneracy of resonances
in the absence of symmetry.
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